6 research outputs found

    TD-GEM: Text-Driven Garment Editing Mapper

    Full text link
    Language-based fashion image editing allows users to try out variations of desired garments through provided text prompts. Inspired by research on manipulating latent representations in StyleCLIP and HairCLIP, we focus on these latent spaces for editing fashion items of full-body human datasets. Currently, there is a gap in handling fashion image editing due to the complexity of garment shapes and textures and the diversity of human poses. In this paper, we propose an editing optimizer scheme method called Text-Driven Garment Editing Mapper (TD-GEM), aiming to edit fashion items in a disentangled way. To this end, we initially obtain a latent representation of an image through generative adversarial network inversions such as Encoder for Editing (e4e) or Pivotal Tuning Inversion (PTI) for more accurate results. An optimization-based Contrasive Language-Image Pre-training (CLIP) is then utilized to guide the latent representation of a fashion image in the direction of a target attribute expressed in terms of a text prompt. Our TD-GEM manipulates the image accurately according to the target attribute, while other parts of the image are kept untouched. In the experiments, we evaluate TD-GEM on two different attributes (i.e., "color" and "sleeve length"), which effectively generates realistic images compared to the recent manipulation schemes.Comment: The first two authors contributed equall

    Model-free neural network-based predictive control for robust operation of power converters

    Get PDF
    An accurate definition of a system model significantly affects the performance of model-based control strategies, for example, model predictive control (MPC). In this paper, a model-free predictive control strategy is presented to mitigate all ramifications of the model’s uncertainties and parameter mismatch between the plant and controller for the control of power electronic converters in applications such as microgrids. A specific recurrent neural network structure called state-space neural network (ssNN) is proposed as a model-free current predictive control for a three-phase power converter. In this approach, NN weights are updated through particle swarm optimization (PSO) for faster convergence. After the training process, the proposed ssNN-PSO combined with the predictive controller using a performance criterion overcomes parameter variations in the physical system. A comparison has been carried out between the conventional MPC and the proposed model-free predictive control in different scenarios. The simulation results of the proposed control scheme exhibit more robustness compared to the conventional finite-control-set MPC
    corecore